Rising Fifth Grade Math Summer Learning Packet

Name:

Get Ready for Fifth Grade Math

Place Value Scramble

Name: \qquad Date: \qquad
Using the numbers in the number bank, create different six-digit numbers based on each of the place value clues below.

$$
6 \quad 35941
$$

1. What is the smallest six-digit number you can make?
\qquad
\qquad , \qquad
\qquad
\qquad
2. What is the largest six-digit number you can make?
\qquad
\qquad , \qquad
\qquad
3. What is the smallest six-digit number you can make that has 4 in the tens place?
\qquad
\qquad
\qquad , \qquad
\qquad
\qquad
4. What is the largest six-digit number you can make that has 1 in the thousands place?
\qquad
\qquad
\qquad _ ' \qquad
\qquad
\qquad
5. What is the smallest six-digit number you can make that is divisible by five?
\qquad
\qquad
\qquad , \qquad
\qquad
\qquad
6. What is the largest six-digit number you can make that ends in an even number?
\qquad
\qquad
\qquad , \qquad
\qquad
\qquad
7. Use the number you wrote in problem 6 to answer the following questions.
a. Circle the digit in the ten thousands place.
b. Write the number in expanded form.
\qquad
Solve the word problems. Be sure to show your work.
8. Peter and Prunella were collecting seashells on the beach. They found 193 sand dollars, 284 mussel shells, and 367 oyster shells. When they got home, they discovered that 54 sand dollars, 106 mussel shells, and 139 oyster shells were broken. How many of the shells were unbroken?

9. Prunella gathered 5 baskets of shells. Each basket contained 50 shells. She gave 48 shells to Peter, 19 shells to her mother, and 72 shells to her cousin, Petunia. How many shells did Prunella have left?
10. Last week, Peter found 241 sand dollars, 106 sea snail shells, and 82 mini conch shells. This week, he found 165 sand dollars, 319 sea snail shells, and 24 mini conch shells. During which week did Peter find more shells? How many more?
11. On Saturday morning, Peter and Prunella arrived at the annual beach clean up event at 9:00. They spent 53 minutes picking up trash and 27 minutes raking sand. If the event ends at 10:30, how many minutes do they have left to make signs that read "keep our beach clean"?

Calculating Area at the Zoo

Name: \qquad Date: \qquad
Find the area of each animal enclosure at the zoo. Remember: Area= Length \times Width

Multiply Two and Three-Digit Factors

Name: \qquad Date: \qquad

Name:
Date: \qquad

Solve each division problem. Then use the remainders for each problem to solve the riddle.

Hint: You will not use all the letters to solve the riddle.

What goes up and doesn't go back down?

Which Numbers are Prime?

Name: \qquad Date: \qquad
Circle the prime numbers and add them together. Remember: A prime number is a number that is divisible only by one and itself.
17
5
21
13
7
1
9
14
18
2
17 3

TOTAL
Is the total a prime number?
Solve the equations and circle the answers that are prime.

14 + 5		2	6×7	3	$30 \div 2$
4	37-28	5	$54 \div 9$	6	$8+19$
7	12×4	8	$11+56$	9	25-8
10	$49 \div 7$	11	19×3	12	102-5
10	$15+23$	11	60-17	12	$128 \div 4$

Sugar Coated Fractions

Name: \qquad Date: \qquad

Fractions are everywhere, even in candy! Write a fraction that shows the ratio of colored candy for each problem, then simplify the fraction. Be sure to show your work.

Gumdrops

Example: $\frac{\text { red gumdrops }}{\text { total number }}=\frac{12}{36} \div \frac{12}{12}=\frac{1}{3}$ gumdrops Divide by a common
factor to simplify

Sour Chews

Lollipops

Activity: With your own favorite colorful candy, find the fractions of each color in the bag.

Feed The
 Krarnsters！ Review

$\frac{12}{5}$

\qquad

For the last one，shade in the pellets using your own outlines．
$\frac{9}{4}$

\qquad
$.10=\frac{1}{10}=$ one tenth $\quad .01=\frac{1}{100}=$ one hundredth
64 C or $\$ 0.64=\frac{6}{10}+\frac{4}{100}$ or six tenths plus four hundredths of a dollar
$\$ 2.05=$ two dollars plus $\frac{5}{100}$ or five hundreths of a dollar

Write each value in decimal form.

1. Five tenths plus three hundredths of a dollar
2. Three dollars plus seventy two hundredths \qquad
3. $\frac{4}{10}+\frac{9}{100}$ of a dollar
4. Eight tenths plus five hundredths of a dollar
5. Six hundredths of a dollar \qquad
6. Four dollars plus nine tenths of a dollar \qquad
7. Ten dollars plus $\frac{1}{10}$ of a dollar
8. Five tenths of a dollar
\qquad
9. Two dollars plus three tenths of a dollar
10. Twelve dollars plus $\frac{2}{100}$ of a dollar

Yards, Feet, and Inches

Name: \qquad -

Date: \qquad
Complete the table by converting inches, feet and yards.
HINT: 12 inches(in.) is equal to 1 foot(ft.), 3 feet is equal to 1 yard (yd.)

	2 yards	3 yards		5 yards
3 feet			12 feet	
	72 inches		144 inches	

Convert the following linear measurements.

1) 1 yard = \qquad inches
2) 108 inches $=$ \qquad feet
3) 15 feet $=$ \qquad yards
4) 8 feet $=$ \qquad inches
5) 144 inches = \qquad yards
6) 6 yards = \qquad feet
7) 108 inches = \qquad yards
8) 10 yards = \qquad feet
9) 60 feet $=$ \qquad yards
10) 10 feet $=$ \qquad inches
11) 7 yards $=$ \qquad feet
12) 96 inches $=$ \qquad feet

Use the conversion table to solve the word problems.

13) Joey is trying out for the football team at school. He tells the coach that he can throw a ball 36 feet, but his coach reminds Joey that the field is measured in yards. How many yards can Joey throw the ball?
14) Marianne is rearranging her room. Each wall in her room is 12 feet long. Her desk measures 36 inches, her bed is 72 inches, and her bookshelf is 24 inches. If she places them all along the same wall, how much of the wall will remain uncovered, in feet?

[^0]\qquad Date: \qquad
Use the greater than, less than, and equal to symbols ($>,<,=$) to compare each set of decimals.

1. $0.419>0.402$
2. 62.03

63.03

3. $0.725 \bigcirc 7.025$
4. $55.90 \bigcirc 55.9$
5. $483.06 \bigcirc 483.08$
6. 37.2537.2

7. 21.91

8. 6.40

6.400

Round each decimal to the given place.

1. round 34.934 to the nearest hundredth 34.93
2. round 607.5 to the nearest whole number \qquad
3. round 3.106 to the nearest hundredth
4. round 26.829 to the nearest tenth
5. round 5.734 to the nearest whole number

6 . round 468.113 to the nearest tenth

The Super Powers of Ten

Name: \qquad —

Date: \qquad

Powers of ten are numbers that are divisible by 10. Review the examples below, then solve the problems.

$52 \times 10=520$
$37 \times 100=3,700$
$4 \times 1,000=4,000$

To multiply a decimal by a power of ten, move the decimal point one place to the RIGHT for each zero after the 1.

Multiply by the power of ten.

1) $0.45 \times 10=$ \qquad
2) $81 \times 1,000=$ \qquad
3) $0.216 \times 100=$ \qquad
4) $1.07 \times 100=$ \qquad
5) $973 \times 10=$ \qquad 6) $0.75 \times 10,000=$ \qquad
6) $63 \times 1,000=$ \qquad
7) $0.059 \times 10=$ \qquad 9) $1,048 \times 100=$ \qquad
$1.6 \div 10=0.16$
$520 \div 10=52$
$37 \div 100=0.37$
$48 \div 1,000=0.048$

> To divide a number by a power of ten, move the decimal point LEFT as many places as there are zeros in power of ten. If there are not enough digits in the number you are dividing, you may add zeros.
Divide by the power of ten.
11) $3,948 \div 100=$ \qquad
12) $56 \div 1,000=$ \qquad
10) $1.27 \div 10=$ \qquad
13) $8 \div 10=$ \qquad
14) $470.1 \div 100=$ \qquad 15) $2.35 \div 1,000=$ \qquad

Place Value Scramble

Name: \qquad Date: \qquad
Using the numbers in the number bank, create different six-digit numbers based on each of the place value clues below.

1. What is the smallest six-digit number you can make?

$$
1 \quad 3 \quad 4, \quad 5 \quad 6 \quad 9
$$

2. What is the largest six-digit number you can make?

$$
9 \quad 6 \quad 5,4 \quad 3 \quad 1
$$

3. What is the smallest six-digit number you can make that has 4 in the tens place?

$$
1 \quad 3 \quad 5,6 \quad 4 \quad 9
$$

4. What is the largest six-digit number you can make that has 1 in the thousands place?

$$
9 \quad 6 \quad 1,5 \quad 4 \quad 3
$$

5. What is the smallest six-digit number you can make that is divisible by five?

$$
1 \quad 3 \quad 4,6 \quad 9 \quad 5
$$

6. What is the largest six-digit number you can make that ends in an even number?

$$
9 \quad 6 \quad 5,3 \quad 1 \quad 4
$$

7. Use the number you wrote in problem 6 to answer the following questions.
a. Circle the digit in the ten thousands place.
b. Write the number in expanded form.

$$
965,314 \quad 900,000+60,000+5,000+300+10+4
$$

Answer Sheet

Beachy Word Problems

Name: \qquad Date: \qquad
Solve the word problems. Be sure to show your work. ANSWERS

1. Peter and Prunella were collecting seashells on the beach. They found 193 sand dollars, 284 mussel shells, and 367 oyster shells. When they got home, they discovered that 54 sand dollars, 106 mussel shells, and 139 oyster shells were broken. How many of the shells were unbroken?

545 shells were unbroken

2. Prunella gathered 5 baskets of shells. Each basket contained 50 shells. She gave 48 shells to Peter, 19 shells to her mother, and 72 shells to her cousin, Petunia. How many shells did Prunella have left?

111 shells left

3. Last week, Peter found 241 sand dollars, 106 sea snail shells, and 82 mini conch shells. This week, he found 165 sand dollars, 319 sea snail shells, and 24 mini conch shells. During which week did Peter find more shells? How many more?

He found 79 more shells this week

4. On Saturday morning, Peter and Prunella arrived at the annual beach clean up event at 9:00. They spent 53 minutes picking up trash and 27 minutes raking sand. If the event ends at 10:30, how many minutes do they have left to make signs that read "keep our beach clean"?

Answer Sheet

Calculating Area at the Zoo

Name: \qquad Date: \qquad
Find the area of each animal enclosure at the zoo. Remember: Area= Length \times Width ANSWERS

$A=944$ square ft.

25 ft .

$A=1,625$ square ft.
L. ${ }^{\prime \prime}$ education.com

65 ft .
$A=1,008$ square ft.

Copyright © 2017 Education.com LLC All Rights Reserved More worksheets at www.education.com/worksheets

Answer Sheet

Multiply Two and Three-Digit Factors

Name: \qquad Date: \qquad

Answer Sheet

Division Riddle

Name: \qquad Date: \qquad

Solve each division problem. Then use the remainders for each problem to solve the riddle.

Hint: You will not use all the letters to solve the riddle.

What goes up and doesn't go back down?

$$
\frac{Y}{5} \frac{O}{1} \frac{U}{6} \frac{R}{0} \quad \frac{A}{3} \frac{G}{4} \frac{E}{2}
$$

Answer Sheet

Which Numbers are Prime? (笽)

Name:
Date:
Circle the prime numbers and add them together. Remember: A prime number is a number that is divisible only by one and itself.
17
21
(5)
9
(11)
13
(7)
1
17
(3)

TOTAL 41
Is the total a prime number? __Yes
Solve the equations and circle the answers that are prime.

Answer Sheet

Sugar Coated Fractions

Name: \qquad Date: \qquad

Fractions are everywhere, even in candy! Write a fraction that shows the ratio of colored candy for each problem, then simplify the fraction. Be sure to show your work.

Gumdrops

ANSWERS

Example: $\frac{\text { red gumdrops }}{\begin{array}{c}\text { total number } \\ \text { gumdrops }\end{array}}=\frac{12}{36} \div \frac{12}{12}=\frac{1}{3}$

Divide by a common factor to simplify

Sour Chews

Lollipops

 lollipops

10 green lollipops

26 purple lollipops

Activity: With your own favorite colorful candy, find the fractions of each color in the bag.

Answer Sheet

EXAMPLE:
 $\frac{10}{3}$

Kramsters are very picky eaters. Feed each kramster the correct number of pellets by converting the following improper fractions to mixed numbers. Color in the pellets to match each mixed number.

For the last one, shade in the pellets using your own outlines.

L̈ ${ }^{\text {I }}$ education.com

Answer Sheet

Write each value in decimal form.

ANSWERS

1. Five tenths plus three hundredths of a dollar
2. Three dollars plus seventy two hundredths
3. $\frac{4}{10}+\frac{9}{100}$ of a dollar
4. Eight tenths plus five hundredths of a dollar
5. Six hundredths of a dollar
\$0.85
6. Four dollars plus nine tenths of a dollar
7. Ten dollars plus $\frac{1}{10}$ of a dollar
\$10.10
8. Five tenths of a dollar
9. Two dollars plus three tenths of a dollar
\$0.50
10. Twelve dollars plus $\frac{2}{100}$ of a dollar \$2.30

Answer Sheet

Yards, Feet, and Inches

Name: \qquad Date: \qquad
Complete the table by converting inches, feet and yards.
HINT: 12 inches (in.) is equal to 1 foot (ft.), 3 feet is equal to 1 yard (yd.)

1 yard	2 yards	3 yards	4 yards	5 yards
3 feet	6 feet	9 feet	12 feet	15 feet
36 inches	72 inches	108 inches	144 inches	180 inches

ANSWERS

Convert the following linear measurements.

1) 1 yard = \qquad 36 inches
2) 108 inches $=$ \qquad 9 feet
3) 15 feet $=\ldots \quad$ yards
4) 8 feet $=\underline{96}$ inches
5) 144 inches $=$ \qquad yards
6) 6 yards = \qquad feet
7) 108 inches $=$ \qquad yards
8) 10 yards = \qquad feet
9) 60 feet $=\underline{20}$ yards
10) 10 feet $=$ \qquad 120 inches
11) 7 yards $=$ \qquad feet
12) 96 inches $=$ \qquad feet

Use the conversion table to solve the word problems.
13) Joey is trying out for the football team at school. He tells the coach that he can throw a ball 36 feet, but his coach reminds Joey that the field is measured in yards. How many yards can Joey throw the ball?

12 yards

14) Marianne is rearranging her room. Each wall in her room is 12 feet long. Her desk measures 36 inches, her bed is 72 inches, and her bookshelf is 24 inches. If she places them all along the same wall, how much of the wall will remain uncovered, in feet?

1 foot

*Bonus Activity: Use a measuring tape or yardstick to measure things around your house. Can you find anything that is longer than 3 yards?

Sunny Day Decimals: Round and Compare

Name: \qquad Date: \qquad
Use the greater than, less than, and equal to symbols ($>,<,=$) to compare each set of decimals.

ANSWERS

1. $0.419>0.402$
2. 62.03
(<) 63.03

3. 0.725
(<) 7.025
4. $55.90 \Theta 55.9$
5. 483.06
(<) 483.08
6. $37.25 \geq 37.2$

7. 21.91
(21.19
8. $6.40 \fallingdotseq 6.400$

Round each decimal to the given place.

1. round 34.934 to the nearest hundredth
2. round 607.5 to the nearest whole number
3. round 3.106 to the nearest hundredth
4. round 26.829 to the nearest tenth
5. round 5.734 to the nearest whole number
6. round 468.113 to the nearest tenth

The Super Powers of Ten

Date: \qquad
Name: \qquad
Powers of ten are numbers that are divisible by 10. Review the examples below, then solve the problems.

To multiply a whole number by a power of ten, count the number of zeros after the 1 and add the same number or zeros (or place values) to the end of the whole number you are multiplying.

$$
\begin{aligned}
& 52 \times 10=520 \\
& 37 \times 100=3,700 \\
& 4 \times 1,000=4,000
\end{aligned}
$$

To multiply a decimal by a power of ten, move the decimal point one place to the RIGHT for each zero after the 1 .

Multiply by the power of ten.

ANSWERS

1) $0.45 \times 10=$ \qquad 2) $81 \times 1,000=\underline{81,000}$
2) $0.216 \times 100=\underline{21.6}$
3) $1.07 \times 100=$ \qquad 5) $973 \times 10=$ \qquad 6) $0.75 \times 10,000=$ \qquad
4) $63 \times 1,000=$ \qquad 8) $0.059 \times 10=0.59$
5) $1,048 \times 100=\underline{104,800}$
$1.6 \div 10=0.16$
To divide a number by a power of ten,

$$
520 \div 10=52
$$ move the decimal point LEFT as many

$$
37 \div 100=0.37
$$

$$
48 \div 1,000=0.048
$$

$48 \div 1,000=0.048$ places as there are zeros in power of ten. If there are not enough digits in the number you are dividing, you may add zeros.

Divide by the power of ten.
10) $1.27 \div 10=$ \qquad 0.127
11) $3,948 \div 100=39.48$
12) $56 \div 1,000=$ \qquad 0.056
13) $8 \div 10=$ \qquad 0.8
14) $470.1 \div 100=$ 4.701
15) $2.35 \div 1,000=$ \qquad

[^0]: *Bonus Activity: Use a measuring tape or yardstick to measure things around your house. Can you find anything that is longer than 3 yards?

